Tuesday, September 27, 2011

Insulin-like growth factor 1

Insulin-like growth factor 1 (IGF-1) also known as somatomedin C or mechano growth factor is a protein that in humans is encoded by the IGF1 gene. IGF-1 has also been referred to as a "sulfation factor” and its effects were termed "nonsuppressible insulin-like activity" (NSILA) in the 1970s.

IGF-1 is a hormone similar in molecular structure to insulin. It plays an important role in childhood growth and continues to have anabolic effects in adults.
IGF-1 consists of 70 amino acids in a single chain with three intramolecular disulfide bridges. IGF-1 has a molecular weight of 7649 daltons.

Synthesis and circulation
IGF-1 is produced primarily by the liver as an endocrine hormone as well as in target tissues in a paracrine/autocrine fashion. Production is stimulated by growth hormone (GH) and can be retarded by under nutrition, growth hormone insensitivity, lack of growth hormone receptors, or failures of the downstream signaling pathway post GH receptor including SHP2 and STAT5B. Approximately 98% of IGF-1 is always bound to one of 6 binding proteins (IGF-BP). IGFBP-3, the most abundant protein, accounts for 80% of all IGF binding. IGF-1 binds to IGFBP-3 in a 1:1 molar ratio.

Mechanism of action
Its primary action is mediated by binding to its specific receptor, the Insulin-like growth factor 1 receptor, abbreviated as ""IGF1R"", present on many cell types in many tissues. Binding to the IGF1R, a receptor tyrosine kinase, initiates intracellular signaling; IGF-1 is one of the most potent natural activators of the AKT signaling pathway, a stimulator of cell growth and proliferation, and a potent inhibitor of programmed cell death.

IGF-1 is a primary mediator of the effects of growth hormone (GH). Growth hormone is made in the anterior pituitary gland, is released into the blood stream, and then stimulates the liver to produce IGF-1. IGF-1 then stimulates systemic body growth, and has growth-promoting effects on almost every cell in the body, especially skeletal muscle, cartilage, bone, liver, kidney, nerves, skin, hematopoietic cell, and lungs. In addition to the insulin-like effects, IGF-1 can also regulate cell growth and development, especially in nerve cells, as well as cellular DNA synthesis.
Deficiency of either growth hormone or IGF-1 therefore results in diminished stature. GH-deficient children are given recombinant GH to increase their size. IGF-1 deficient humans, who are categorized as having Laron syndrome, or Laron's dwarfism, are treated with recombinant IGF-1.

IGF-1 binds to at least two cell surface receptors: the IGF-1 receptor (IGF1R), and the insulin receptor. The IGF-1 receptor seems to be the "physiologic" receptor - it binds IGF-1 at significantly higher affinity than the IGF-1 that is bound to the insulin receptor. Like the insulin receptor, the IGF-1 receptor is a receptor tyrosine kinase - meaning it signals by causing the addition of a phosphate molecule on particular tyrosines. IGF-1 activates the insulin receptor at approximately 0.1x the potency of insulin. Part of this signaling may be via IGF1R/Insulin Receptor heterodimers (the reason for the confusion is that binding studies show that IGF1 binds the insulin receptor 100-fold less well than insulin, yet that does not correlate with the actual potency of IGF1 in vivo at inducing phosphorylation of the insulin receptor, and hypoglycemia)..
IGF-1 is produced throughout life. The highest rates of IGF-1 production occur during the pubertal growth spurt. The lowest levels occur in infancy and old age.

Related growth factors
IGF-1 is closely related to a second protein called "IGF-2". IGF-2 also binds the IGF-1 receptor. However, IGF-2 alone binds a receptor called the "IGF II receptor" (also called the mannose-6 phosphate receptor). The insulin growth factor-II receptor (IGF2R) lacks signal transduction capacity and its main role is to act as a sink for IGF-2 and make less IGF-2 available for binding with IGF-1R. As the name "insulin-like growth factor 1" implies, IGF-1 is structurally related to insulin, and is even capable of binding the insulin receptor, albeit at lower affinity than insulin.

Lr3IGF-1 (Long R3 Insulin-like Growth Factor-I or Long R3IGF-I) is an 83 amino acid analog of human IGF-I actually comprising the complete human IGF-1 sequence but with the substitution of an Arg for the Glu at position 3, as well as a 13 amino acid extension peptide at the N-terminus. This makes Long R3IGF-I significantly more potent (2-3x) than IGF-I in studies, because it has a lower affinity to be rendered inactive by IGF binding proteins, and consequently more potential activity in the body.

As a therapeutic agent
Mecasermin (brand name Increlex) is a synthetic analog of IGF-1 which is approved for the treatment of growth failure. IGF-1 has been manufactured recombinantly on a large scale using both yeast and E. coli.

Several companies have evaluated IGF-1 in clinical trials for a variety of additional indications, including type 1 diabetes, type 2 diabetes, amyotrophic lateral sclerosis (ALS aka "Lou Gehrig's Disease"), severe burn injury and myotonic muscular dystrophy (MMD). Results of clinical trials evaluating the efficacy of IGF-1 in type 1diabetes and type 2 diabetes showed great promise in reducing hemoglobin A1C levels, as well as daily insulin consumption. Cephalon and Chiron conducted two pivotal clinical studies of IGF-1 for ALS, and although one study demonstrated efficacy, the second was equivocal, and the product has never been approved by the FDA.
In the last few years, two additional companies Tercica and Insmed compiled enough clinical trial data to seek FDA approval in the United States. In August 2005, the FDA approved Tercica's IGF-1 drug, Increlex, as replacement therapy for severe primary IGF-1 deficiency based on clinical trial data from 71 patients. In December 2005, the FDA also approved Iplex, Insmed's IGF-1/IGFBP-3 complex. The Insmed drug is injected once a day versus the twice-a-day version that Tercica sells.

As A Performance Enhancing Aid
IGF 1 & 11 are being widely used as performance enhancing aids with varying results. The IGF family is highly regarded in Bodybuilding and physique development but much less so in strength sports. Many experts in the world of sports Poly-Pharm believe this is just a gap in application based knowledge and IGF’s will become indispensable in the speed/strength world, while others feel this group holds little promise for non-physique athletes. Most athletes and coaches I have spoken to have found the most positive sports results with the LR3 variant.

EvilGenius Sports Performance